Problem One.

Suppose that $f=0$ a.e. on E. Let E^{\prime} be any set $E^{\prime} \subset E, m\left(E^{\prime}\right)<\infty$, and let g be any bounded measurable function $g: E^{\prime} \rightarrow \mathbb{R}$ with $0 \leq g \leq f$ (since f is nonnegative we can take g nonnegative as well).

Say that $S \subset E^{\prime}$ is the set $\left\{x \in E^{\prime}: g(x)=0\right\}$. Since $f=0$ a.e. on $E^{\prime} \subset E$, and $0 \leq g \leq f$, it follows $g=0$ a.e. on E^{\prime}. Thus $m\left(E^{\prime}-S\right)=0$.

Then we have

$$
\begin{aligned}
\int_{E} f & =\sup _{g}\left\{\int_{E^{\prime}} g\right\} \\
& =\sup _{g}\left\{\int_{S} g+\int_{E^{\prime}-S} g\right\} \\
& =\sup _{g}\left\{0+\int_{E^{\prime}-S} g\right\} \\
& \leq \sup _{g}\left\{m\left(E^{\prime}-S\right) \cdot\left(\sup _{E^{\prime}-S} g\right)\right\} \\
& =0
\end{aligned}
$$

For the other direction, suppose now that $\int_{E} f=0$. Let $\lambda>0$, and let $E_{\lambda} \subset E$ be the set $E_{\lambda}=\{x \in E: f(x) \geq \lambda\}$. By the Chebyshev inequality,

$$
m\left(E_{\lambda}\right) \leq \frac{1}{\lambda} \int_{E} f
$$

Proof of the Chebyshev inequality is by considering the simple function $g_{\lambda}=\lambda \cdot \chi_{E_{\lambda}}$, or in the case where $m\left(E_{\lambda}\right)=\infty$, take a series of simple functions $g_{\lambda, n}=\lambda \chi_{E_{\lambda, n}}$ with the sets $E_{\lambda, n}=E_{\lambda} \cap B_{n}(0)$.

Now the set $T \subset E$ defined by $T=\{x \in E: f(x)>0\}$ can be written as $T=\bigcap_{\lambda} E_{\lambda}$. Choose $\lambda=\frac{1}{n}$. Then we get in particular that

$$
m(T) \leq \frac{1}{n} \int_{E} f=0
$$

for any $n \in \mathbb{N}$, so $m(T)=0$.
Remark. Many of you did this without Chebyshev inequality, considering instead that $\int_{E} f=0$ implies that all simple functions g satisfying $0 \leq g=\sum_{i=1}^{N} y_{i} \chi_{S_{i}} \leq f$ must have integral zero, i.e., $g=0$ a.e. on E. Then express f as the limit of a sequence of simple functions. I like this proof a lot!

Problem Two.

Fix $\epsilon>0$. Applying Egorov to $\left(f_{j}\right)_{j \in \mathbb{N}}$ restricted to the domain $B_{m}(0) \cap E$, we can find $A_{m} \subset B_{m}(0) \cap E$ such that $m\left(\left(B_{m}(0) \cap E\right)-A_{m}\right)<\frac{\epsilon}{2^{m}}$ and $\left.\left.f_{j}\right|_{A_{m}} \rightarrow f\right|_{A_{m}}$ uniformly as $j \rightarrow \infty$.

Now it follows that $f_{j} \rightarrow f$ uniformly when restricted to the domain $E_{M}=\bigcup_{m=1}^{M} A_{m}$, since the convergence is uniform on each A_{m}, and there are only finitely many of them. (Thus if $\left|f_{j}(x)-f(x)\right|<\epsilon$ when $j>J_{m}$ for $x \in A_{m}$, we can take the maximum of the J_{m} 's, and it will work for all of E_{M}.)

This gives us the desired $E_{0} \subset E_{1} \subset \cdots \subset E$, with uniform convergence on each E_{M}. Now we just check that $\mu\left(E-\bigcup_{M=1}^{\infty} E_{M}\right)=0$. Indeed, $E-\bigcup_{M=1}^{\infty} E_{M}$ turns out to be the intersection of all the bad bits $\left(B_{m}(0) \cap E\right)-A_{m}$, we can see:

$$
\begin{aligned}
E-\bigcup_{M=1}^{\infty} E_{M} & =E \cap\left(\bigcup_{M=1}^{\infty} E_{M}\right)^{c} \\
& =E \cap\left(\bigcup_{m=1}^{\infty} A_{m}\right)^{c} \\
& =E \cap \bigcap_{m=1}^{\infty}\left(A_{m}\right)^{c} \\
& =E \cap \bigcap_{m=1}^{\infty}\left(B_{m}(0)\right)^{c} \cup\left(\left(B_{m}(0) \cap E\right)-A_{m}\right) \\
& =\lim _{k \rightarrow \infty} \bigcap_{m=k}^{\infty}\left(B_{m}(0) \cap E\right)-A_{m}
\end{aligned}
$$

which has measure zero. (In the final step, we used that $\left(B_{m}(0)\right)^{c}$ and $\left(\left(B_{m}(0) \cap E\right)-A_{m}\right)$ are disjoint, and eventually each $x \in E$ will be contained in some $B_{m}(0)$, thus not in any further $\left(B_{m}(0)\right)^{c}$.)

